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11.5 Stochastic Calculus for Jump Process



1t0-Doeblin Formula for One Jump Process

X<(t) = X°(0) + /0 t I'(s)dW (s) + fo t O(s)ds  (11.5.1)

dX°(s) = I'(s)dW (s) + O(s)ds, dX°(s)dX°(s) = I'*(s)ds.



1t0-Doeblin Formula for One Jump Process

Let f(z) be a function whose first and second derivatives are defined and
continuous. Then

to's lemma : df (X ()= f (X(1))dX (1) +%f"(X(t))(dX(t))z

]

df (X°(s)) = f'(X(s)) dX“(s) + %f”(X °(5)) dX°(s) dX“(s)
= f'(X°(s))I'(s) AW (s) + f'(X°(s))O(s) ds
+% F(X(5)) 2(s) ds. (11.5.2)

dX°(s) =I(s) dl;f(s) +O(s)ds, dX°(s)dX°(s) = I?(s)ds.



1t0-Doeblin Formula for One Jump Process

We write this in integral form as

Gt fRC) = F ) o = Fa ) - FK o)

/ot | [t 27 xS >(¢) ol
;jﬁ %’(%‘(g))/"(g)g(w@)+ﬁff(% (5))9S)okS+ gjoi% (% (SI) [ ok

f(Xe(t)) = F(X°(0)) + /0 fI(XC(s))(s)dW (s) + fo f'(X€(s))6(s) ds

l ; " c 2
+2/0 " (X€(s))I%(s) ds.



1t0-Doeblin Formula for One Jump Process

We now add a right-continuous pure jump term J into (11.5.1), setting

X(t) = X(0)+ I(t) + R(t) + J(¢),

Between jumps of J, the analogue of (11.5.2) holds:
d] =0, dX(s) =T(s)dW(s) + 0(s)ds = dX°(s), dX(s)dX(s) = T*(s)ds

4 (X(5)) = F'(X(s)) dX () + 5 /(X (5)) dX (s) dX (s)
= f'(X(s))I'(s) aW(s) + f'(X(s))O(s) ds
+%f”(X(3))F2(s) ds

= f'(X(s)) dX°(s) + %f”(X(s)) dX°(s)dX°(s). (11.5.3)



Theorem 11.5.1

Theorem 11.5.1 (It6-Doeblin formula for one jump process). Let

X (t) be a jump process and f(x) a function for which f'(z) and f"(x) are
defined and continuous.

PROOF: Fix w € (2, which fixes the path of X, andlet 0 < 1 < o < --- <
Tn—1 < t be the jump times in [0,%) of this path of the process X. We set
70 = 0, which is not a jump time, and 7,, = ¢, which may or may not be a
jump time. Whenever u < v are both in the same interval (7, 7;+1), there
is no jump between times u and v, and the It6-Doeblin formula (11.5.3) for

continuous processes applies. We thus have

v

F(X ()~ F(X(w) = ]

u

f'(X(s)) dX<(s) + % f ..., f"(X(s)) dX°(s) dX°(s).



Theorem 11.5.1

Letting u | 7; and v 1 7j4; and using the right-continuity of X, we conclude
that Before the Jump After the Jump

| }
f(X (1)) — f(X(75))
1

_ / " p(x(s) dX°(s) + 5 / f”l (X (s)) dX°(s) dX°(s). (11.5.5)

We now add the jump in f(X) at time 7;4+; into (11.5.5), obtaining thereby
f(X(mj41)) = f(X(75))

= /Tj+1 f'(X(s))dXe(s) + %/Tj“ (X (s)) dX°(s) dX*(s)

_ _ L X(t) = X(0) +I(t) + R(®) +J(¢)
+f(X(TJ+1)) f(X(TJ'H )) {X(t ) =X(0)+I(t) + R(t) +J(t-)



Theorem 11.5.1

Summing over j = 0,...,n — 1, we obtain
f(X (@) = £(X(0))
n—1
= Y [f(X(1340)) - £(X ()]
j=0

_ / F(X(s)) dX(s) + & /0 £ (X (s)) dX°(s) dX(s)

+ Z [f(X(r511)) — f(X(75+1-))],

Note in this connection that if there is no jump at 7, = t,
then the last term in the sum on the right-hand side, f(X (7)) — f(X(7=—)),
is zero. O



Theorem 11.5.1

Theorem 11.5.1 (It6-Doeblin formula for one jump process). Let
X (t) be a jump process and f(x) a function for which f'(x) and f"(x) are
defined and continuous. Then

f(X(®) = £(X(0) + /0 f’(X(s))dX"(sH% /U £ (X () dX°(s) dX°(s)
+ > [1(X() - £(X(s-)]. (11.5.4)

0<s<t



Example 11.5.2

Example 11.5.2 (Geometric Poisson process). Consider the geometric Poisson
process

S(t) = S(0)exp {N(t)log(c + 1) — Aot} = S(0)e~*"*(c + 1)V ®), (11.5.6)

where o > —1 is a constant. If o > 0, this process jumps up and moves down
between jumps; if —1 < o < 0, it jumps down and moves up between jumps.

We may write S(t) = S(0)f(X(¢)), where f(z) = e® and

X(t) = N(t)log(c + 1) — Mot

has continuous part X€(t) = —Aot and pure jump part J(t) = N(¢) log(o+1).



Example 11.5.2

According to the It6-Doeblin formula for jump processes,
S(t) = £(X(2))
t
= £(X(0) - Ao /0 Fx@)dut Y [F(X@) - (X (o))

O<u<t
It6-Doeblin Formula

F(X(®) = £(X(0) + /0 £(X(s)) dX‘”'(s)+% /0 F (X (s)) dX<(s) dX<(5)

+0<Z,9 [f(X(s)) - £(X(s-))]- PR
—f(%)=€% = (%) :{'(X{o))—fjf FX(A)) % (A SoAlh)
FUx ) = g +o0 + 0 LFxw)) — F () ]
o<ust
%C(M) = _7\‘6% / UCXC(M.); -)\GQKUL _ {( %(O)) —AGJ?‘F/(X((AJ)Q(/(/L
AR A K ) = K™ )™ = 0 ¢ 5 LAy — F(u-n ]

() o<us<t



Example 11.5.2

S(t) = f(X(t))

— £(X(0)) - Ao /Ot FxX@)dut 3 [F(Xw) = F(X(u))

0<u<t

= S(0) - Ao /0 Swdu+ 3 [S(w) - Su-)).

O<u<t

iy =4) = & = %)
FX (W) = g = stn)

(11.5.7)



Example 11.5.2

If there is a jump at time u, then S(u) = (o + 1)S(u—). Therefore,

S(u) — S(u—) =aS(u-) (11.5.8)
s 0 s N(U)
SiU) = S10)E (s t])
A (u-)
s(u-)=5(0)€

N(w) - N(U=) = |

St) ~7\G'(L{“M")
= - <+ |
e o ( )




Example 11.5.2

If there is a jump at time u, AN(u) = 1.
If there is no jump at time u, AN(u) = 0.

= S(u) — S(u—) =aS(u—)AN (u).

S [S()-Sw-)] = ¥ oS(u-)AN() = o fo S(u—) dN (u).

O<u<t o<u<t



Example 11.5.2

It does not matter whether we write the Riemann integral on the right-
hand side of (11.5.7) as f; S(u)du or as f; S(u—) du. The integrands in these
two integrals differ at only finitely many times, and when we integrate with
respect to du, these differences do not matter. Therefore, we may rewrite

(11.5.7) as

S(t) = S(0) —)u:r/0 S(u—) du+a/0 S(u—) dN(u)

= S(0) +cr/; S(u—)dM(u),

M) = N(u) — Au, dM(u) = dN(u) — Adu



Example 11.5.2
S(t) = S(0) - Ao /0 S(u-)du + o /0 S(u—) dN (u)

= S(0) +J/0 S(u—)dM(u),

M is the compensated Poisson process M(u) = N(u) — Au, which is a

martingale. Because the integrand S(u—) is left-continuous, Theorem 11.4.5
guarantees that S(t) is a martingale.

Theorem 11.4.5. Assume that the jump process X (s) of (11.4.1)-(11.4.3) is
a martingale, the integrand &(s) is left-continuous and adapted, and

t
E/ I'?(s)®%(s) ds < oo for all t > 0.
0

Then the stochastic integral f; &(s) dX(s) is also a martingale.



Example 11.5.2

In this case, the It6-Doeblin formula (11.5.7) has a differential form,
namely,

dS(t) =oS(t—)dM(t) = —AoS(t)dt + cS(t—) dN(t). (11.5.9)

We were able to obtain this differential form because in (11.5.8) we were able
to write the jump in f(X) (i.e., the jump in S) at time u in terms of f (X (u—))
(i.e., in terms of S(u—)).




Corollary 11.5.3

Corollary 11.5.3. Let W(t) be a Brownian motion and let N(t) be a Pois-
son process with intensity A > 0, both defined on the same probability space

(12, F,P) and relative to the same filtration F(t), t > 0. Then the processes
W (t) and N(t) are independent.



Corollary 11.5.3

KEY STEP IN PROOF: Let u; and uo be fixed real numbers and define

Y () = exp {us W(t) + u2N(t) - %ui"t ~A(e* - 1)e).

To do this, we define

1
X(S) = u W(S) + ugN(S) — -2-‘!1,%8 — A(Buz — 1)8
and f(r) = €%, so that Y (s) = f(X(s)). The process X(s) has Ito integral

part I(s) = w3 W(s), Riemann integral part R(s) = —%u%s — A(e*2 —1)s, and

pure jump part J(s) = uzN(s)

dX¢(s) = uy dW (s) — —ul ds — A(e"* —1)ds, dX°(s)dX°(s) = uids.



Corollary 11.5.3

We next observe that if Y has a jump at time s, then

Y(s) = exp {u1W(s) + ug(N(s—)+1) — %ufs — A(e*? — l)s} =Y (s—)e*2.

Therefore, Y(s) —Y(s—) = (e*>* —1)Y(s—)AN(s).



Y(t) = f(X(¢))
t 1 t
= f(X(0)) + /0 f(X(s)) dX"(s)+§ /0 f"(X(s)) dX°(s) dX*(s)
+ Y [F(X(s) = £(X(s-))]

0<s<t

dX°(s) = uy dW (s) — luf ds — A(e"2 —1) ds, dX°(s)dX°(s) = ui ds.

F(X(0)) = exp {14, W(0) + s N(0)—Laix0 -A (€ —1)x0 = exp{0] = |
$1%(s)) =exp {X(5)] = Y (s)

—uts 3—12tss-e“2—tss
1+ 1/OY()dW() 2u1f0Y()d A l)fOY()d

+;u';’f Sds+ 3 [Y(s) - Y(s-)

0<s<t



Corollary 11.5.3

—uts s—lztss—-e“z—tss
=1+ 1fOY()dW() 2u1/0Y()d Al 1)]0Y()d

+;u§/ (5)ds+ ¥ [Y(s) = Y(s-)]

0<s<t

because Y has only finitely many jumps, fg Y(s)ds = th Y (s—

Y(s) —Y(s=) = (e*2 —1)Y(s—)AN(s).
=1+ /O Y(s) dW(s) — A(e* — 1) fo Y (s—)ds
+(e*? - 1)/0 Y(s—)dN(s)



Corollary 11.5.3

t t
=1+ u1/ Y(s) dW(s) — A(e*? — 1)/ Y (s—)ds
0 0
t
+(e*? — 1)/ Y(s—)dN(s)
0
M(u)=N(u) — Au,dM(u) =dN(u) — Au

=1+u /0 Y(s)dW(s) + (e — 1) /0 Y(s=)dM(s),  (11.5.10)



Corollary 11.5.3

Y(£)=1+u, / Y(s)dW (s) + (e / Y(s—=)dM(s),  (11.5.10)

The It6 integral fg Y (s) dW(s) in the last line of (11.5.10) is a martingale,

and the integral of the left-continuous process Y (s—) with respect to the
martingale M (s) is also. Therefore, Y is a martingale.



Corollary 11.5.3

Because Y_(O) =1 and Y is a martingale, we have EY (¢) = 1 for all ¢. In
other words,

Eexp {mW(t) + uaN(t) — %u%t — A(e*? — 1)t} =1 for all £t > 0.

We have obtained the joint moment-generating function formula

Eew W) +u2N(t) — oy {%uft} -exp {At(e"* - 1)}.



Corollary 11.5.3

Een W) +u2N(®) — oxp {%uft} -exp {At(e** —1)}.

This is the product of the moment-generating function Ee**W () = exp {%uft}

for W (t) (see Exercise 1.6(i)) and the moment-generating function Ee%2N(®) =

exp { \t(e¥2 — 1)} for N(t) (see (11.3.4)). Since the joint moment-generating
function factors into the product of moment-generating functions, the random
variables W(t) and N(t) are independent.




Corollary 11.5.3

Exercise 1.6. Let u be a fixed number in R, and define the convex function
@(x) = e** for all z € R. Let X be a normal random variable with mean

p = EX and standard deviation o = []E(X — ,u,)z] 2 , i.e., with density

1 z—p)?

oV2m

f(z) =

(A 2e

(i) Verify that
EeuX _ euu+%u202.

1

W(0) = 0,W(t)~ N(0,t), MGF of W(t) = ez"

When y = 1, we have the Poisson process, whose moment-generating function
is thus

pnt)(u) = Ee*N () — exp{At(e” —1)}. (11.3.4)
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